REACTIONS ACIDO-BASIQUES

I. DEFINITIONS

1) Acides et bases de Bronsted

 Un acide de Bronsted est une espèce moléculaire ou ionique susceptible de donner un proton H⁺ ou de provoquer la libération d'un proton du solvant.

$$\begin{array}{ccc} A & & H^+ & B \\ acide & \rightarrow & particule \, \acute{e}chang\acute{e}e & + & base \end{array}$$

A et B forment un couple acide base qu'on note A/B

Exemple

$$HBr \leftrightarrows H^+ + Br^-$$

$$HNO_3 \leftrightarrows H^+ + NO_3^-$$

$$NH_4^+ \leftrightarrows H^+ + NH_3$$

$$C_6H_5OH \leftrightarrows H^+ + C_6H_4O^-$$

$$CO_2 + H_2O \leftrightarrows H^+ + HCO_3^-$$

$$Cu^{2+} + 2H_2O \leftrightarrows 2H^+ + Cu(OH)_2$$

Remarque

$$H_3PO_4 \leftrightarrows H^+ + H_2PO_4^-$$

 $H_2PO_4^- \leftrightarrows H^+ + HPO_4^{2-}$
 $HPO_4^{2-} \leftrightarrows H^+ + PO_4^{3-}$

- L'acide phosphorique est un triacide (polyacide).
- L'acide sulfurique H_2SO_4 est un diacide.

$$H_2SO_4 \leftrightarrows H^+ + HSO_4^-$$
$$HSO_4^- \leftrightarrows H^+ + SO_4^{2-}$$

 Une base de Bronsted est une espèce moléculaire ou ionique susceptible de capter un proton.

Exemple

$$NH_3 + H^+ \leftrightarrows NH_4^+$$

$$CO_3^{2-} + H^+ \leftrightarrows HCO_3^-$$

$$HCO_3^- + H^+ \leftrightarrows H_2CO_3(H_2O + CO_2) : \text{Pluie acide}$$

- $H_2PO_4^-$, HPO_4^{2-} jouent le rôle d'un acide et d'une base : *ampholytes*
- CO_3^{2-} est une dibase.

2) Acides forts – bases fortes

Pour un acide fort, la réaction d'hydrolyse qui produit des ions hydronium est totale.

<u>Exemple</u>: HCl, HBr, HNO_3 , $HClO_4$, H_2SO_4 , $H_3COOH_2^+$ sont des acides forts.

Pour une base forte, la réaction d'hydrolyse qui produit des hydroxydes est totale.

<u>Exemple</u>: NH_2^- , O^{2-} , $C_2H_5O^-$, (NaOH, KOH) sont des bases fortes.

Lorsque leur réaction d'hydrolyse n'est pas totale, on a affaire à des acides faibles (des bases faibles).

<u>Exemple</u>: HF, HCN, HCOOH, CH_3COOH , H_3PO_4 , HSO_4^- , HSO_3^- , HCO_3^- sont des acides.

II. COUPLES ACIDES-BASES

1) Couples ACIDES-BASES de l'eau

L'eau a des propriétés acido-basiques :

- C'est un acide : $H_2O \rightarrow H^+ + OH^-$, couple H_2O/HO^-
- C'est une base : $H_2O + H^+ \rightarrow H_3O^+$, couple H_3O^+/H_2O Une espèce chimique qui appartient à deux couples acide/base en étant tantôt l'acide, tantôt la base est un ampholyte (on dit aussi amphotère). L'eau est un ampholyte.

2) Exemples d'autres couples

Deux espèces chimiques constituent un couple acide/base s'il est possible de passer de l'un à l'autre par perte ou gain d'un proton H^+ .

Un acide et sa base conjuguée forment un couple acide-base.

Couple acide-base	Forme acide	Forme basique
HCl/Cl^-	HCl	Cl^-
CH_3COOH/CH_3COO^-	<i>CH</i> ₃ <i>COOH</i>	CH ₃ COO-
H_2SO_4/HSO_4^-	H_2SO_4	HSO_4^-
$HSO_4^-/HSO_4^{}$	HSO_4^-	$SO_4^{}$
NH_4^+/NH_3	NH_4^+	NH_3
H_3O^+/H_2O	H_3O^+	H_2O
Na ⁺ /NaOH	Na ⁺	NaOH

3) pH d'une solution

On définit le pH d'une solution diluée par :

$$pH = -\log\frac{[H_3O^+]}{C_0}$$

Avec $C_O = 1 \ mol^{-1}$; on peut écrire:

$$pH = -\log[H_3O^-] = -\log h$$

Avec $h = [H_3 O^+].$

Remarque:

- $[H_3O^+]$ en $mol.L^{-1}$
- H_3O^+ représente H^+ solvaté, en effet :

$$H_3O^+ \rightleftharpoons H^+ + H_2O$$

- le pH de l'eau pure à 25°C est égal à 7. Donc $[H_3O^+] = [OH^-] = 10^{-7} mol. l^{-1}$
- le produit ionique de l'eau $K_e = [H_3 O^+][OH^-] = 10^{-14}$ ne dépend que de la température

•
$$pK_e = -\log K_e = pH + pOH (= 14 \text{ à}$$
 avec $pOH = -\log[OH^-]$
$$pH + pOH = pKe$$

III. REACTIONS ACIDO-BASIQUES

a) <u>Définition</u>

• Une réaction acido-basique est un **échange de proton** entre l'acide d'un couple A_1/B_1 et la base d'un autre couple A_2/B_2 . Son équation chimique est donc de la forme : $A_1+B_2 \rightarrow A_2+B_1$.

On peut l'établir en $\ll additionnant \gg$ les démi-équations protoniques (en inversant celle du couple dont est issu la base B_2).

• Exemple : réaction entre l'acide éthanoïque (couple CH_3COOH/CH_3COO^-) et l'ion hydroxyde (couple H_2O/OH^-).

Demi-équation du couple $A_1/B_1: CH_3COOH_{(aq)} \rightarrow CH_3COO^-_{(aq)} + H^+$

Demi-équation du couple A_2/B_2 (inversée) : $OH_{(aq)}^- + H^+ \rightarrow H_2O_{(l)}$

Equation de la réaction acido-basique : $CH_3COOH_{(aq)} + OH_{(aq)}^- \rightarrow CH_3COO_{(aq)}^- + H_2O_{(l)}$

2) Constante d'acidité

Soit la réaction acide-base : $AH + H_2O \leftrightarrows H_3O^+ + A^+$

$$K_A = \frac{[H_3 O^+][A^-]}{[AH]}$$

Les concentrations en $mol. L^{-1}$ et le solvant est l'eau.

 K_A constante d'acidité fonction uniquement de la température.

On définit le pK_A d'un couple A/B comme :

$$pK_A = -\log K_A \Rightarrow K_A = 10^{-pK_A}$$

3) Exemples:

L'eau est un amphotère

 \rightarrow (H_3O^+/H_2O) :

$$\begin{cases}
H_3O^+ + H_2O \leftrightarrows H_3O^+ + H_2O \\
A_1 \quad B_2 \leftrightarrows A_2 \quad B_1
\end{cases}$$

$$K_A(H_3O^+/H_2O) = \frac{[H_3O^+]}{[H_3O^+]} = 1 \Rightarrow$$

$$pK_A(H_3O^+/H_2O) = 0$$

 \rightarrow (H_2O/OH^-) :

$$\begin{cases}
H_2O + H_2O & = H_3O^+ + OH^- \\
A_1 & B_2 & = A_2 & B_1
\end{cases}$$

$$\overline{pK_A(H_2O/OH^-)} = 14$$

4) Classement des couples acides bases

Un <u>acide</u> est d'autant **plus fort** qu'il est capable de céder des protons. Cette propriété peut être associée à la valeur de la <u>constante d'acidité</u>: en solution aqueuse, plus K_a est élevée et plus la réaction $A + H_2O \rightarrow B + H_3O^+$ est déplacée vers la droite.

Un acide est d'autant plus fort que la constante d'acidité K_a de son couple est élevée ou le $pK_a = -\log K_a$ de son couple plus faible.

De même, une <u>base</u> est d'autant plus forte qu'elle est capable de capter des protons

Une base est d'autant plus forte que la constante d'acidité K_a du couple acide-base associée est plus faible ou le $pK_a = -\log K_a$ plus élevé.

Plus un acide est fort et plus sa base conjuguée est faible et inversement.

IV. EQUILIBRE ACIDO-BASIQUE

Soient deux couples acide-bases A_1/B_1 (pK_{A1}) et A_2/B_2 (pK_{A2})

$$A_1 \leftrightarrows H^+ + B_1 (pK_{A1})$$

$$A_2 \leftrightarrows H^+ + B_2 (pK_{A2})$$

Donc:

$$A_1 + B_2 \rightleftharpoons B_1 + A_2$$

Appliquons la relation **Guldberg et Waage**:

$$K = \frac{[B_1][A_2]}{[B_2][A_1]} = \frac{[B_1] * [H_3 O^+]}{[A_1]} * \frac{[A_2]}{[B_2] * [H_3 O^+]}$$

$$K = \frac{K_{A1}}{K_{A2}} = 10^{pK_{A1} - pK_{A2}}$$

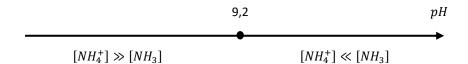
V. DIAGRAMME DE PREDOMINANCE

1) *Définition*

Soit le couple HA/A^- :

$$K_A = \frac{[H^+][A^-]}{[AH]} \Rightarrow \log K_A = \log[H^+] + \log\frac{[A^-]}{[HA]}$$

$$pH = pK_A + \log \frac{[A^-]}{[HA]}$$

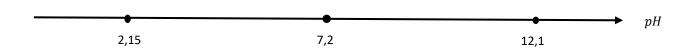

- Si $[A^-] = [HA] \Rightarrow pH = pK_A$.
- Si $[A^-] > [HA]$ (la base prédomine) $\Rightarrow pH > pK_A$.
- Si $[A^-] < [HA]$ (l'acide prédomine) $\Rightarrow pH < pK_A$.

L'acide prédomine pK_A pH

La base prédomine

2) Exemple:

Pour le couple NH_4^+/NH_3 , on a : $pK_A = 9.2 \Rightarrow pK_B = 14 - 9.2 = 4.8$



Application: On donne les pka des couples suivants:

$$H_3PO_4/H_2PO_4^-\colon 2,15\ ;\ H_2PO_4^-/HPO_4^{2-}\colon 7,2\ ;\ HPO_4^{2-}/PO_4^{3-}\colon 12,1$$

Placer sur le diagramme les domaines de prédominance de chaque espèce.

Le diagramme de prédominance de l'acide phosphorique

3) Prévision des réactions acido basiques

On étudie toujours la réaction : $A_1 + B_2 \rightleftharpoons B_1 + A_2$

• Si $K_{A1} > K_{A2}$, c'est-à-dire si $pK_{A1} < pK_{A2}$, alors $K_R > 1$

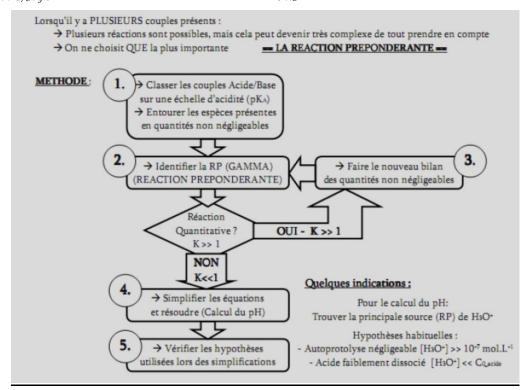
les domaines de prédominance de A_1etB_2 sont disjoints, c'est-à-dire qu'il n'y a pas de domaine de pH dans lequel A_1 et B_2 puissent être simultanément les espèces prédominantes de leur couple.

 A_1 est l'acide le plus fort et B_2 est la base la plus forte : la réaction entre A_1 et B_2 est avancée ($K_R > 1$, la réaction se fait davantage dans la sens $1 \rightarrow$ que dans le sens $2 \leftarrow$)

On peut prévoir le sens de la réaction avec la règle du γ (gamma).

Si $K_{A1}\gg K_{A2}$ ($K_R\geq 10^3$) la réaction entre A_1 et B_2 est considérée comme totale (on dit aussi quantitative) et on peut écrire $A_1+B_2\to B_1+A_2$

• Si $K_{A1} < K_{A2}$, c'est-à-dire si $pK_{A1} > pK_{A2}$, alors $K_R < 1$


Les domaines de prédominances de A_1 et B_2 ont une partie commune : A_1 et B_2 peuvent coexister. La réaction entre A_1 et B_2 est limitée.

4) Méthode de la réaction prépondérante

Lorsqu'il y a plusieurs couples présents :

- Plusieurs réactions sont possibles, mais cela peut devenir très complexe de tout prendre en compte
- On ne choisit que la plus importante : la réaction prépondérante.

METHODE:

VI. COMPOSITION DANS L'ETAT FINAL

1) Cas d'une réaction totale

Exercice:

On ajoute $1,0.10^{-3}mol$ de soude (NaOH) en pastilles dans 250~mL d'acide chlorhydrique $(H_3O^+ + Cl^-)$ à $2,0.10^{-2}mol$. L^{-1} .

- a) Quelle est la réaction prépondérante ? Est-elle totale ou limitée ?
- b) Faire un bilan de matière et calculer le pH final de la solution.

Résolution:

a) Réaction prépondérante

$$H_3O^+ + OH^- \to 2H_2O$$
 , $K = \frac{K(H_3O^+/H_2O)}{K(H_2O/OH^-)} = \frac{1}{10^{-14}} = 10^{14}$. La réaction est totale.

b) Bilan des matières et calcul du pH

La réaction étant totale, l'espèce limitant est OH^-

$$n(H_3O^+) = 1,9.10^{-2}$$
, $[H_3O^+] = \frac{1,9.10^{-2}}{0,25} = 7,6.10^{-2} mol/L$
 $pH = -\log(7,6.10^{-2}) = 1,1$
 $[OH^-] = \frac{Ke}{[H_3O^+]} = 1,3.10^{-13} mol/L$

2) Réaction avec équilibre chimique

Exercice:

Déterminer l'état final des solutions de volume 1L obtenues en dissolvant :

 $0,10\ mol$ de chlorure d'ammonium, $0,050\ mol$ d'acétate d'ammonium, $0,15\ mol$ d'acide acétique et $0,15\ mol$ d'hydroxyde de sodium

équation

$$NH_4^+ + CH_3COO^- \subseteq NH_3 + CH_3COOH$$

On considère la RP suivante [$acide\ le+fort\ (CH_3COOH)\ et\ la\ base\ la+forte(OH^-)$] réaction quasi-totale

$$OH^- + CH_3COOH \leftrightarrows H_2O + CH_3COO^-$$

On prend cette nouvelle solution comme point de départ et on recommence...

équation

$$NH_4^+ + CH_3COO^- \hookrightarrow NH_3 + CH_3COOH$$

$$K = \frac{Ka_1}{Ka_2} = 4.10^{-5}$$

Réaction peu avancée

 $K=rac{x^2}{0,15.0,2}$ \Rightarrow $x=1,1.10^{-3}M$, ce qui est bien négligeable devant 0,015. La formule d'anderson $pH=pKa+\lograc{(B)}{(A)}=4,8+\lograc{0,2}{1,1.10^{-4}}=9,2+\lograc{1,1.10^{-4}}{0,15}=7,1$ \Rightarrow $(H_3O^+)=7,9.10^{-8}M$ et $(OH^-)=1,25.10^{-7}M$ ces deux valeurs des concentrations des espèces crées respectivement par R1 et R2 sont trop négligeables devant $x=1,1.10^{-4}M$ ce qui justifie que la réaction R

Conclusion

Espèces majoritaires : $(NH_4^+) = 0.15M$ et $(CH_3COO^-) = 0.2M$

Espèces minoritaires : $(NH_3) = 1,1.10^{-3}M$ et $(CH_3COOH) = 1,1.10^{-3}M$

Espèces ultra minoritaires : $(H_3O^+) = 7.9.10^{-8}M$ et $(OH^-) = 1.25.10^{-7}$